
Numerical Simulations For Active Tectonic Processes:
Increasing Interoperability And Performance

JPL Task Plan No. 83-6791

Interoperability Milestone H – 7/30/2002

Come to agreement on design policy for interoperability and community
delivery - Review board approves requirements and a preliminary design
for functionality.

Team

Geoffrey Fox: Information Architect

Community Grid Computing laboratory
Indiana University
501 N. Morton, Suite 224
Bloomington, IN 47404-3730
gcf@indiana.edu
812-856-7977

Jay Parker: Overall software engineer

Jet Propulsion Laboratory
Mail Stop 238-600
4800 Oak Grove Drive
Pasadena, CA 91109-8099
Jay.W.Parker@jpl.nasa.gov
818-354-6790

Andrea Donnellan: Database design and implementation

Jet Propulsion Laboratory
Mail Stop 183-335
4800 Oak Grove Drive
Pasadena, CA 91109-8099
donnellan@jpl.nasa.gov
818-354-4737

Marlon Pierce – Indiana University: Code Interoperability Software
Engineer

Community Grid Computing laboratory
Indiana University
501 N. Morton, Suite 224
Bloomington, IN 47404-3730
marpierc@indiana.edu
812-856-1212

Dennis McLeod: Database interoperability

University of Southern California
Mail Code 0781
3651 Trousdale Parkway
Los Angeles, CA 90089-0742
mcloed@pollux.usc.edu
213-740-7285

Anne Chen: Database implementation

University of Southern California
Mail Code 0781
3651 Trousdale Parkway
Los Angeles, CA 90089-0742
yunanche@usc.edu
213-740-7285

Lisa Grant: Fault database architect

University of California, Irvine
Environmental Analysis and Design
Irvine, CA 92697-7070
lgrant@uci.edu
949-824-5491

Miryha Gould: Population of fault database

University of California, Irvine
Environmental Analysis and Design
Irvine, CA 92697-7070
miryha@uci.edu
949-824-5491

Application

We are building a new Problem Solving Environment (QuakeSim) for use by the
seismological, crustal deformation, and tectonics communities for developing an
understanding of active tectonic and earthquake processes. The top-level operational
architecture of our proposed solid earth research virtual observatory (SERVO) shows
science users interacting with interface programs as well as modeling, simulation, and
analysis tools. The general architecture follows the “Web Services” model being
developed by business interests, but is applied to scientific applications and supporting
software resources (such as databases). The system is divided into three tiers: a user
interface layer (implemented as a browser interface), a system resource layer, and a
middle control layer that maintains proxies (or brokers) to the system resources (Figure
1). The middle tier provides a uniform interface to the resource layer. Following the
Web Services approach, we define XML interface abstractions (in WSDL) for basic
services (such as File Management) and implement the interface with appropriate
technologies (such as with a relational database). Communication between the services is
done with an XML messaging architecture (SOAP).

Raw (HPC)
Resources

Middleware

Database

Portal
Services

System
Services

System
Services

System
Services

Application
Service

System
Services

System
Services

Grid
Computing

Environments

User
Services

“Core”
Grid

Figure 1. High level architecture of planned system showing grids,
portals, and grid computing environments.

One of the most critical aspects of our proposed system is supporting interoperability
given the heterogeneous nature of data sources as well as the variety of application
programs, tools, and simulation packages that must operate with data from our system.
Interoperability will be implemented by using distributed object technology combined
with development of object API's that conform to emerging standards. We will define our
object API's in XML and dynamically map this specification into the chosen object
model. This strategy was successfully used in the Gateway portal, which currently uses a
CORBA middle tier but has used a pure Java solution with the same objects.

Our objective is to develop a system with the following specific components.

1. A database system for handling both real and simulated data.

2. Fully three-dimensional finite element code with adaptive mesh generator capable of
running on workstations and supercomputers for carrying out earthquake simulations.

3. Inversion algorithms and assimilation codes for constraining the models and
simulations with data.

4. A collaborative portal (Object Grid Framework) allowing for seamless
communication between codes, reference models, and data.

5. Pattern recognizers capable of running on workstations and supercomputers for
analyzing data and simulations.

For our development we will follow the software engineering plan but may add
adaptations in cases where particular unique requirements emerge.

Requirements

The project software engineering plan is located at:

 http://www-aig.jpl.nasa.gov/public/dus/gem/CT/SW_Eng_plan.html

Requirements for the project have been defined and can be found at:

http://www-aig.jpl.nasa.gov/public/dus/quakesim/CT_Requirements.doc

http://www-aig.jpl.nasa.gov/public/dus/quakesim/CT_Requirements.pdf

Code descriptions and input/outputs:

Several codes are being implemented in this system for individual use, or for interaction
with other codes in the system. The general code descriptions are below as well as a
diagram indicating linkages between the codes (Figure 2). Abstractions of each module
are at the end of the document (Figures 5-10). The inputs and outputs are specified in
terms of how the codes will communicate and will be interoperable. These abstractions
do not serve to describe the details of the actual (internal) input and output formats.
Details of the codes and documentation are posted separately and links are provided in
cases where this has been posted.

Links to posted code and documentation can be found at:

http://www-aig.jpl.nasa.gov/public/dus/quakesim/documentation.html

http://www-aig.jpl.nasa.gov/public/dus/quakesim/download.html

The major project benchmarked codes have been documented and posted. Additional
codes throughout the project will be posted and are noted below. Brief descriptions are as
follows:

disloc

Handles multiple arbitrarily dipping dislocations (faults) in an elastic half-space to
produce surface displacements based on Okada’s 1985 paper.

Status: To be posted.

simplex

Inverts surface geodetic displacements for fault parameters using simulated annealing
downhill residual minimization. Is based on disloc and uses dislocations in an elastic half
space.

Status: To be posted.

geofest (coupled with a mesh generator)

Three-dimensional viscoelastic finite element model for calculating nodal displacements
and tractions. Allows for realistic fault geometry and characteristics, material properties,
and body forces.

Status: Posted

VC (VirtualCalifornia)

Program to simulate interactions between vertical strike-slip faults using an elastic layer
over a viscoelastic half-space.

Status: Posted

park

Boundary element program to calculate fault slip velocity history based on fault frictional
properties.

Status: Posted

DAHMM

Time series analysis program based on Hidden Markov Modeling. Produces feature
vectors and probabilities for transitioning from one class to another.

Status: To be posted

PDPC

Time series analysis pattern recognition program to calculate anomalous seismicity
patterns and probabilities.

Status: To be posted

Flow between code modules

Figure 2. Linkages between programs that maybe run separately or
coupled to other programs.

Design Policy

The goal of this project is to provide codes and data in an integrated web-services based
environment using a proxy component architecture (Figure 3). To accomplish this goal
we must take advantage of rapidly evolving web-services technology. Therefore, it is
difficult to specify the design in great detail at the outset of the project. Our work will
rely on rapid prototyping, testing, and then deployment. The interfaces that will be
developed will come out of research and experimentation. As the team determines the
best protocols and methods they will be posted on the web.

Documents posted so far are:

Approach and schema:

http://www.servogrid.org/slide/GEM/Interop/AWS.doc.

Schema definitions:

http://www.servogrid.org/GCWS/Schema/index.html.

WSDL Descriptions of the core service definitions:

http://www.servogrid.org/GCWS/Schema/index.html

Application or
Content source

WSDL

Web Service

S
R

W

P

Application Proxy as a WS
General Application Ports
Interface with other Web
Services

User Face of
Web Service
WSRP Ports define
WS as a Portlet

Portal
User Profile
Aggregate

UI Fragments

Client

Integrate Multiple Portlets
User Customization
at either Portal or if
complicated at WS

Actual
Application

Figure 3 An overview of the proxy component architecture. A complete
description can be found at:
http://www.servogrid.org/slide/GEM/Interop/AWS.doc.

Interoperability

In our design policy each program becomes a Web service and all data is fed from Web
services. This make take place through: 1) another Web service (program), 2) file access
implemented as a Web service, or 3) database access wrapped as a Web service. Each
data I/O becomes a port with an associated WSDL (Web Services Definition Language to
become OGSA Open Grid Service Architecture). For our schema WSDL specifies the
data structure of this stream. Other important ports on each Web service are: 1) 'user-
facing ports" for Web input and output, and 2) "Grid Information port" where one can
enquire as to properties of Web service. The initial code linkages (Figure 1) will be
encoded in GSFL Grid Service Flow Language being developed by another group at
Indiana and Argonne.

Community Delivery

Community delivery will be via the world wide web. We will make use of the Open
Channel Foundation to post the software from this project. We have also established a
web site http://www.servogrid.org for disseminating information about the project,
documentation, and links to software source code. SERVO is the Solid Earth Research
Virtual Observatory, which makes use of grid technologies.

Preliminary Design for Functionality

Fault Database

The “database system” for this project must manage a variety of types of earthquake
science data and information. There are pre-existing collections, with heterogeneous
access interfaces; there are also some structured collections managed by general-purpose
database management systems. We will also construct at least one new database,
characterizing dynamically-defined earthquake faults.

We will develop an XML scheme to describe various parameters of earthquake faults and
input data. We will develop our earthquake fault databases based on this previous work.
The databases will focus on paleoseismic, GPS, InSAR, and seismicity data. We will also
work with communities that have begun to establish data standards. Our database will
include simulated faults, well-known faults, as well as hypothesized faults, for testing
through our simulations. We will tag our data based on the type of interpretation and also
indicate the level of confidence that the fault or segment actually exists.

Most faults in the existing databases have been divided into characteristic segments that
are proposed to rupture as a unit. Geologic slip rates are assigned to large segments rather
than to the specific locations (i.e. geographic coordinates) where they were measured.
These simplifications and assumptions are desirable for seismic hazard analysis, but they
introduce a level of geologic interpretation and subjective bias that is inappropriate for
simulations of fault behavior. Therefore, we propose to develop an objective database
that includes primary geologic and paleoseismic fault parameters (fault
location/geometry, slip rate at measured location, measurements of coseismic
displacement, dates and locations of previous ruptures) as well as separate
interpreted/subjective fault parameters such as characteristic segments, average
recurrence interval, magnitude of characteristic ruptures etc (Figure 4). Both will be
updated as more data is acquired and interpreted through research and the numerical
simulations.

To support this earthquake fault database and others, we will eventually acquire and
employ a state-of-the-art commercially-available general-purpose database management
system (DBMS). Initially our database system will be developed on a public domain
DBMS such as MySQL. In particular, we will utilize an extensible relational system.
These systems support the definition, storage, access, and control of collections of
structured data. Further, we require extensible type definition capabilities in the DBMS
(to accommodate application-specific kinds of data), the ability to combine information
from multiple databases, and mechanisms to efficiently return XML results from
requests. Currently, DBMSs available from Informix, Oracle, and Sybase would provide
a good portion of the necessary capabilities.

One key issue that we must address here is the fact that such DBMSs operate on SQL
requests, rather than those in some XML-based query language. Query languages for
XML are just now emerging; in consequence, we shall initially do XML to SQL
translations in our middleware/broker. With time, as XML query language(s) emerge, we
will employ them in our system. To provide for the access and manipulation of
heterogeneous data sources (datasets, databases), the integration of information from such

sources, and the structural organization and data mining of this data, we propose to devise
and employ techniques being developed at the USC Integrated Media Systems Center for
wrapper-based information fusion to support data source access and integration [MNN99;
AM99].

Figure 4. Fault database extended entity relationship. This will be
mapped to a relational database and will be initially implemented in
MySQL.

Code Interoperability

We are addressing several aspects of code interoperability, including

1. The execution of applications (such as disloc, geofest, etc.) on different
resources;

2. Method interfaces to core services such as job submission and file transfer;

3. Common metadata about application input and output data; and

4. Common events that will allow communication between applications.

We do this through XML schemas definitions. As we describe below, applications are
defined by application descriptor schema, method interfaces use WSDL (Web Service

Definition Language, a World Wide Web Consortium recommendation). Application
data types and events are also being abstracted into XML definitions.

Our approach treats GEM codes as “legacy” applications that do not need to be altered.
Instead of building interoperable libraries for the codes, we wrap the codes in general
purpose application proxies, which derive from the same set of schema definitions. The
application proxies have two primary purposes: they describe the necessary steps to
invoke, monitor, and communicate with the application, and they describe the underlying
Core Web Services, described below, that are needed by the application.

Core Web Services are basic functions needed to interact with a particular host resource
(a workstation, a supercomputer, a database, etc.) We identify the following minimal
basic service abstractions: file manipulation, command execution, batch script generation,
job monitoring. Each of these services is defined by an interface written in the Web
Services Definition Language (WSDL), an XML language for describing class interfaces.
This interface can be cast into the appropriate language (such as Java) and implemented
by programming to the interface. The advantage of this approach (as we have explored in
other projects) is that it allows geographically distributed development groups to
collectively define the relatively lightweight interface and then develop the service
implementations separately. Client and server implementations will interoperate because
a common interface is used and a constrained set of wire protocol communications carry
the method invocation requests and responses (typically in SOAP, such as in our
prototype systems). Implementation issues are hidden from outside developers by
encapsulation. An example of the usefulness of this development technique is
exemplified by the file management service, which may rely on a number of technologies
(from a simple approach using the Unix file system to various database technologies) in
various implementations, but allows for interoperability through a single standard
interface.

We have defined the WSDL interfaces for the minimal list of basic services mentioned
above and have prototype implementations in place on a testbed PSE. Other core
services that can be implemented include basic information services about host
computing resources and authorization services that control the access to content.

The core services themselves may be interesting to end users, but more generally we will
want to concentrate on applications, describing how a user runs the Geofest application
on a particular resource. We have defined a set of schema that we call application
descriptors for this purpose. The application descriptor schema has been developed to be
an abstract way of describing how to use applications. A particular code has only one
application description that can be used by any other component of the system. This
description serves as a common data model for all applications, and the associated “get”
and “set” methods for manipulating the data serves as a rudimentary programming
interface, with more convenient interfaces created through adapters to these rudimentary
methods.

We have designed the application description schema for multiple purposes. From one
point of view they provide a simple and standard way for adding applications to our
problem solving environment. With their associated programming interface, they also
define a standard around which client interfaces to the applications can be built. From

the code interoperability point of view, the application descriptions and their
programming interfaces define application proxies. These proxies eliminate the need to
develop interoperable communication mechanisms within the codes themselves. Instead,
in our architecture all communication between applications will go through the
application proxy interfaces, so we need to define and develop communication
mechanisms only for the proxies. The proxies in turn are responsible for translating
incoming and outgoing messages as needed by the applications that they wrap.

One simple but important example of application communication is the posting and
receiving of execution status. In support of this, we have developed a simple event
mechanism based on queuing system email. An application proxy may be created to run
a code on a high performance computer using a queuing system such as PBS. The
queuing system generates email at various stages of execution (queued, running,
completed), and we treat these as simple events that can be used to communicate between
listeners. The queue system email message is captured and converted into a generic
XML format and posted to a publish/subscribe system (such as the Java Message Service
in our implementation), which then publishes the event to all subscribers. Subscribing
applications may include job status displays, email forwarders that resend the notice to
the user, and other applications proxies that need to know the status of the running
application. We intend for this simple event system to form the basis of our prototype
code coupling system: applications can be sequentially staged, with the next application
in a chain executing after it receives the “completed” event from the previous application.

Finally, there is the problem of data interoperability: different codes need to work with
each others data in a data flow chain. Our plan for interoperable data descriptions is to
define the general metadata tags that describe the content of our target codes. We show
these metadata abstractions for each of our targeted codes graphically in the figures. We
can then use this as a common data format and provide translators between the common
format and the particular format needed by a given code. This eliminates the need to
build a set of translators between every code pair. There are actually several existing
“common data formats” that may be appropriate, such as HDF5 and NetCDF, as well as
custom hybrid approaches such as the XDMF from the DoD’s ICE project.

Documented technical achievements towards goal

In addition to defining the design specifications outlined here, we have begun the initial
development of the system. A prototype database using MySQL with a java interface has
been implemented and tested. The module disloc has been put into the Gateway
framework and runs as a web service.

• We have designed WSDL (XML) interfaces for basic portal services: job
submission, batch script generation, file transfer, and job monitoring. The
preliminary WSDL descriptions of the core service definitions are available from
http://www.servogrid.org/GCWS/servlet/AxisServlet. These service definitions
are subject to change, and updated service definitions will appear at the above
URL automatically when the new versions of any particular service are deployed.
All of the schema definitions included in that document are available at:
http://www.servogrid.org/GCWS/Schema/index.html.

• We have made initial implementations of clients and servers for the above
services. Clients and servers are implemented in Java, and communication is
handled using SOAP over HTTP requests and responses.

• We have designed initial sets of schema for describing applications and have
implemented Java language bindings for these schema as well as interfaces for
manipulating the data objects. Our schema and our approach are documented in a
report available at http://www.servogrid.org/slide/GEM/Interop/AWS.doc.

• We have developed a prototype portal interface for the disloc code using the above
services and application schema. An advanced version of the portal also supports
simplex and allows execution and management of jobs and files on three different
computing resources (a linux box running PBS, a solaris workstation that runs jobs
interactively, and a 64 processor Sun E10000 running PBS).

• We have set up a project web server, http://www.servogrid.org/ that includes
support for distributed content management, allowing individual group members
to upload files, documents, and codes, and to manage their own web content.

Abstractions of code modules

Figure 5. Disloc program input and output parameters.

Figure 6. Simplex program input and output parameters.

Figure 7. Virtual California program input and output parameters.

Figure 8. Park program input and output parameters.

Figure 8. GeoFEST program input and output parameters.

Figure 9. DAHMM program input and output parameters.

Figure 10. PDPC program input and output parameters.

